精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=lnx-x+1.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)证明:不等式lnx≤x-1恒成立.

分析 (1)求出函数的导数,计算f′(1),f(1),求出切线方程即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值,证出结论即可.

解答 解:(1)f′(x)=$\frac{1-x}{x}$,(x>0),
∴f′(1)=0,f(1)=0,
故切线方程是:y=0;
(2)证明:由(1)令f′(x)>0,解得:x<1,
令f′(x)<0,解得:x>1,
故f(x)在(0,1)递增,在(1,+∞)递减,
∴f(x)的最大值是f(1)=0,
∴f(x)≤0在(0,+∞)恒成立,
即lnx≤x-1恒成立.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-2|-|x+2|.
(1)把函数写成分段函数的形式,并画出函数图象;
(2)根据图象写出函数的值域,并证明函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式$\frac{5}{x+2}≥1$的解集为(  )
A.(-∞,3)B.(-2,3]C.(-∞,-2)∪[3,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y+2=0和圆C:x2+y2-2y=0,动圆M与l相切,而且与C内切.求当M的圆心距直线g:x-y-2=0最近时,M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数是偶函数的是(  )
①f(x)=lg|x|;②f(x)=ex+e-x;③f(x)=x2(x∈N);④f(x)=x-$\sqrt{{x}^{2}}$.
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sin($\frac{π}{6}$+α)=$\frac{1}{3}$,则cos($\frac{2π}{3}$-2α)=(  )
A.$\frac{4\sqrt{2}}{9}$B.$\frac{8}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题p:?x,y∈R,x2+y2≥0,则命题p的否定为(  )
A.?x,y∈R,x2+y2<0B.?x,y∈R,x2+y2≤0
C.?x0,y0∈R,x02+y02≤0D.?x0,y0∈R,x02+y02<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别是a,b,c,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{b}$+2$\sqrt{3}$csinA=2b+4c,且14sinC=3$\sqrt{3}$.
(1)求A的大小;
(2)若c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案