精英家教网 > 高中数学 > 题目详情
(1)已知f(x)=
cosπx,x<1
f(x-1)-1,x>1
,求f(
1
3
)+f(
4
3
)的值.
(2)已知角α的终边过点P(-4m,3m),(m≠0),求2sinα+cosα的值.
分析:(1)求出f(
1
3
)与f(
4
3
)的值即可求出f(
1
3
)+f(
4
3
)的值.
(2)直接利用三角函数的定义,求解即可.
解答:解:(1)f(
1
3
)=cos
π
3
=
1
2
;f(
4
3
)=f(
1
3
)-1=-
1
2

所以f(
1
3
)+f(
4
3
)=0.
(2)因为角α的终边过点P(-4m,3m),
所以m>0时:sinα=
3
5
,cosα=-
4
5

2sinα+cosα=
2
5

m<0时:sinα=-
3
5
,cosα=
4
5

2sinα+cosα=-
2
5

所以2sinα+cosα的值为
2
5
-
2
5
点评:本题考查三角函数的值的求法,三角函数的定义的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)满足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知f(x)+2f(
1
x
)=3x
,则函数g(x)=f(2x)在(0,1)上有唯一零点;
②对于函数f(x)=x
1
2
的定义域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),则必有0<f(b)<1;
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0.则函数f(x)、g(x)都是奇函数.
其中正确命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2+log4x(1≤x≤16),求函数g(x)=[f(x)]2+f(x2)的值域.
(2)若直线y=4a与y=|ax-2|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案