精英家教网 > 高中数学 > 题目详情
13.设a,b∈R,且a>0函数f(x)=x2-ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最小值为2,则f(2)等于(  )
A.-4B.0C.4D.8

分析 利用已知条件求出a,b的关系,然后求解f(2)的值.

解答 解:a>0,在[-1,1]上g(x)的最小值为2,
可得-a+b=2,
函数f(x)=x2-ax+2b,
故f(2)=4-2a+2b=4+2×2=8.
故选:D.

点评 本题考查函数的最值,考查学生的计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.一个空间几何体的三视图如图所示,则这个几何体的表面积为(  )
A.26+4$\sqrt{2}$B.27+4$\sqrt{2}$C.34+4$\sqrt{2}$D.17+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-x.
(1)求f(x)的单调区间;
(2)已知数列{an}的通项公式为an=1+$\frac{1}{{2}^{n}}$(n∈N*),求证:a1a2a3…an<e(e为自然对数的底数);
(3)若k<$\frac{xf(x)+{x}^{2}}{x-1}$对任意x>2恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-a|+|x-1|.
(I)解关于a的不等式f(1)≥2;
(II)若关于x的不等式f(x)≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{x+1(0≤x<1)}\\{{2}^{x}-\frac{1}{2}(x≥1)}\end{array}\right.$,设a>b≥0,若f(a)=f(b),则f(a)+b的取值范围是[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线ax+y-1=0和直线2x+(a+1)y+1=0垂直,则实数a等于(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|m-x|,且f(4)=0.
(1)求实数m的值;
(2)出函数f(x)的单调区间;
(3)若方程f(x)=a只有一个实根,确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(  )
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

同步练习册答案