精英家教网 > 高中数学 > 题目详情

设a∈R,f(x)= (x∈R),试确定a的值,使f(x)为奇函数;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f=x2,求f(x);
(3) 已知一次函数f(x)满足f(f(x))=4x-1,求f(x);
(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画出下列函数的图象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=(lgx+|lgx|).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数f(x)=在区间[1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数的定义域是,对于任意的,有,且当时,.
(1)求的值;
(2)判断函数的奇偶性;
(3)用函数单调性的定义证明函数为增函数;
(4)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)求函数f(x)的定义域;
(2)设α是第四象限的角,且tan α=-,求f(α)的值.

查看答案和解析>>

同步练习册答案