精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,且α<β,则下列不等式关系中正确的是


  1. A.
    f(sinα)>f(cosβ)
  2. B.
    f(cosα)<f(cosβ)
  3. C.
    f(cosα)>f(cosβ)
  4. D.
    f(sinα)<f(cosβ)
C
分析:根据偶函数的性质和条件判断出在[2,3]上是增函数,再由f(2-x)=f(x)和偶函数的定义得f(x)=f(x+2),求出函数的周期,再判断出在[0,1]上是增函数,根据α和β的范围以及余弦函数的单调性,判断出对应余弦值的大小和范围,再由函数f(x)的单调性进行判断.
解答:∵偶函数f(x)在[-3,-2]上是减函数,∴f(x)在[2,3]上是增函数,
又∵偶函数f(x)满足f(2-x)=f(x),∴f(x)=f(x-2),
即f(x+2)=f(x),函数的周期T=2,
∴f(x)在[0,1]上是增函数,
∵α,β是钝角三角形的两个锐角,且α<β,
∴根据余弦函数在(0,π)上递减得,0<cosβ<cosα<1,
则f(cosα)>f(cosβ).
故选C.
点评:本题以余弦函数为载体,考查了余弦函数的单调性、抽象函数的周期性和奇偶性的应用,即根据周期函数的性质和奇偶性对应的关系式,将自变量进行转化,转化到已知范围内求解,考查了转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案