如图,四棱锥P-ABCD的底面为正方形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,
(I) 求证:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.
(1)对于面面垂直的证明,要通过线面垂直的证明来分析得到,关键是证明
(2)
解析试题分析:解:(I) 证:
平面PAD⊥平面PCD 6分
(II)解:取PD的中点E,过E作EG⊥PC,垂足为G,连AG, AE
由△PAD为正三角形得 AE⊥PD
又平面PAD⊥平面 PCD
∴ AE⊥平面PCD
∴ AG⊥PC
∴ ∠AGE是二面角A-PC-D的平面角.
设底面正方形边长为2a,
∴ AD = 2a,ED = a,∴ AE = a
由=,∴ EG =
tan∠AGE = =
∴ cos∠AGE = 14分
考点:二面角的平面角,面面垂直
点评:主要是考查了面面垂直的证明以及二面角的平面角的求解运算,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,已知棱柱的底面是菱形,且面,,,为棱的中点,为线段的中点,
(Ⅰ)求证: 面;
(Ⅱ)判断直线与平面的位置关系,并证明你的结论;
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在正三角形中,、、分别是、、边上的点,满足(如图1).将△沿折起到的位置,使二面角成直二面角,连结、(如图2)
(Ⅰ)求证:⊥平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图:四棱锥中,,,.∥,..
(Ⅰ)证明: 平面;
(Ⅱ)在线段上是否存在一点,使直线与平面成角正弦值等于,若存在,指出点位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com