精英家教网 > 高中数学 > 题目详情
10.如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为(  )
A.30°B.45°C.60°D.75°

分析 过A作AE⊥CD,垂足为E,在Rt△ABD和Rt△ACE中使用勾股定理求出AD,AC的长,再在△ACD中使用余弦定理求出∠CAD.

解答 解:过A作AE⊥CD,垂足为E,则CE=50-20=30,AE=60,
∴AD=$\sqrt{A{B}^{2}+B{D}^{2}}$=20$\sqrt{10}$,
AC=$\sqrt{C{E}^{2}+A{E}^{2}}$=30$\sqrt{5}$,
在△ACD中,由余弦定理得
cos∠CAD=$\frac{A{C}^{2}+A{D}^{2}-C{D}^{2}}{2AC•AD}$=$\frac{\sqrt{2}}{2}$,
∴∠CAD=45°.
故选:B.

点评 本题考查了解三角形在生活中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2(|2x-1|+|x+2|-a)
(1)当a=4时,求函数f(x)的定义域;
(2)若对任意的x∈R,都有f(x)≥2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(文科)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.
(理科)曲线y=x2与y=x所围成的封闭图形的面积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知an=$\left\{\begin{array}{l}{\frac{{3}^{n}-{2}^{n}}{{3}^{n}+{2}^{n}},n≤2014}\\{\frac{{2}^{n}-{3}^{n}}{{2}^{n}+{3}^{n}},n≥2015}\end{array}\right.$,则$\underset{lim}{n→∞}$an=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩的频数分布表

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x),f(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)的定义域是[-2,4],则函数g(x)=f(x+1)+f(-x)的定义域是(  )
A.[-4,4]B.[-2,2]C.[-3,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的前n项和是Sn,若M,N,P三点共线,O为坐标原点,且$\overrightarrow{ON}$=a15$\overrightarrow{OM}$+a6$\overrightarrow{OP}$(直线MP不过点O),则S20等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

查看答案和解析>>

同步练习册答案