(本题满分12分)如图,在直三棱柱中,底面为等边三角形,且,、、分别是,的中点.
(1)求证:∥;
(2)求证:;
(3) 求直线与平面所成的角.
(1)根据线面平行的判定定理来得到。
(2)根据线面垂直,然后结合面面垂直的判定定理得到。
(3)
解析试题分析:解:(1)证明:因为分别是的中点,所以,
又,, 所以∥.
(2)证明:因为三棱柱为直三棱柱,所以,
又,
所以,
又为等边三角形,是的中点,
又所以,
又,所以,.
(3)取为的中点,连结, .易知,又由(2)
,,又,
,交线为,则是在面内的射影
即为直线与平面所成的角.
不妨设则,,
.
又,
,即直线与平面所成的角为.
考点:本试题考查了空间中的线面平行,以及面面垂直,和线面角的求解问题 。
点评:解决这类问题,要熟练的掌握平行和垂直的判定定理以及性质定理是关键。同时要利用线面角的定义,作出线面角,转化为平面图形 ,求解空间角的思想。属于中档题。
科目:高中数学 来源: 题型:解答题
如图1,,,过动点A作,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).
(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点,分别为棱、的中点,试在棱上确定一点,使得,并求与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,
为中点.
(1)证明://平面;
(2)证明:平面;
(3)求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
下列三个图中,左边是一个正方体截去一个角后所得多面体的直观图。右边两个是正视图和侧视图.
(1)请在正视图的下方,按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);
(2)求该多面体的体积(尺寸如图).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在底面为直角梯形的四棱锥中,平面,,,.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成的角;
(Ⅲ)设点在棱上, ,若∥平面,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,三棱柱的各棱长均为2,侧面底面,侧棱与底面所成的角为.
(1) 求直线与底面所成的角;
(2) 在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com