精英家教网 > 高中数学 > 题目详情
16.已知直线1:x-y+b=0被圆C:(x-2)2+y2=3截得的弦长为2,则b=0或-4.

分析 由圆的方程可得圆心坐标和半径,再利用直线1:x-y+b=0被圆C:(x-2)2+y2=3截得的弦长为2,可得圆心到直线x-y+b=0的距离,即可求出b.

解答 解:圆C:(x-2)2+y2=3的圆心C(2,0),半径等于$\sqrt{3}$,
∵直线1:x-y+b=0被圆C:(x-2)2+y2=3截得的弦长为2,
∴圆心到直线x-y+b=0的距离d=$\sqrt{3-1}$=$\sqrt{2}$,
即$\frac{|2+b|}{\sqrt{2}}$=$\sqrt{2}$,∴b=0或-4.
故答案为:0或-4.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,正确运用圆的性质是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$,其中0<α<π,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)和向量$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$).
(1)设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$-$\overrightarrow{b}$|,求f(x)的解析式;
(2)若命题p:“?x∈[0,π],f(x)≥k”为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等腰△ABC中,AB=AC,|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=2$\sqrt{6}$,则△ABC面积的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=lnx+x2-x-2的零点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系内,已知⊙O1:(x+2)2+y2=1,⊙O2:(x-2)2+y2=1,过平面内一点P分别作⊙O1和⊙O2的切线PM,PN,其中M,N为切点,且PM=$\sqrt{3}$PN,记△PMO1和△PNO2的面积分别为S1,S2,则(S1+S22的最大值为16+4$\sqrt{13}$+8$\sqrt{3}$+2$\sqrt{39}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x,(x≥1)函数g(x)=$\frac{1}{{x}^{2}-2x+4}$,(0<x$≤\sqrt{a}$+1,其中a>0).
令h(x)为函数f(x)与g(x)的积函数.
(1)求函数h(x)的表达式,并求出其定义域;
(2)当h(x)的值域为[$\frac{1}{3}$,$\frac{1}{2}$]时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设数列{an}满足an+1=2an,a1=1,数列{an}的前n项和为Sn,则S2015=(  )
A.22015-1B.22016-2C.22014-1D.1-22015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.
为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上的球场中轴线上,y轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程$y=\frac{1}{2}kx-\frac{1}{80}(1+{k^2}){x^2}(k>0)$表示的曲线上,其中k与发射方向有关.发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

同步练习册答案