精英家教网 > 高中数学 > 题目详情

【题目】设函数 . (Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范围.

【答案】(I)证明:f(x)=| + |+| |≥|( )﹣( )|=| |= ≥2 =1. ∴f(x)≥1.
(II)解:∵f(x)<5,即|3+ |+|3﹣ |<5,
+|3﹣ |﹣2<0,
当0<a<6时, +3﹣ ﹣2<0,解得1+ <a<6,
当a≥6时, + ﹣2<0,解得6≤a<5+2
综上,a的取值范围是(1+ ,5+2 ).
【解析】(I)根据绝对值不等式的性质化简消去x,再利用基本不等式得出结论;(II)讨论a的范围,去绝对值符号解出a的范围.
【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={(x,y)|x,y,1﹣x﹣y是三角形的三边长},则A所表示的平面区域(不含边界的阴影部分)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示三条不同的直线,表示三个不同的平面,给出下列四个命题:

,则

内的射影, ,则

是平面的一条斜线,点为过点的一条动直线,则可能有

,则.

其中正确的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一三棱柱ABC﹣A1B1C1各棱长相等,B1在底面ABC上的射影是AC的中点,则异面直线AA1与BC所成角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出与销售额之间有如下的对应数据(单位:万元):

(1)求关于的线性回归直线方程;

(2)据此估计广告费用为10万元时销售收入的值.

(附:对于线性回归方程,其中

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)写出直线l的极坐标方程与曲线C的直角坐标方程;
(Ⅱ)已知与直线l平行的直线l'过点M(1,0),且与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a+1)lnx﹣x2
(1)讨论函数f(x)的单调区间;
(2)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反. (Ⅰ)对于 ,不等式 恒成立,求实数t的取值范围;
(Ⅱ)令h(x)=xg(x)﹣f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体外接球的表面积为

查看答案和解析>>

同步练习册答案