抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
科目:高中数学 来源: 题型:解答题
已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:,
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆:相交于四点,设原点到四边形的一边距离为,试求时满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线与的另一交点为,且的面积为,求椭圆的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,
(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com