精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

求曲线的直角坐标方程,并指出其表示何种曲线;

设直线与曲线交于两点,若点的直角坐标为

试求当时, 的值.

【答案】曲线的直角坐标方程为 它表示以为圆心、为半径的圆; .

【解析】试题分析:(Ⅰ)曲线 ,可以化为;可得圆;

(Ⅱ)当时,直线的参数方程为 (为参数)利用参数的几何意义求当 的值.

试题解析:

Ⅰ)曲线 ,可以化为

因此,曲线的直角坐标方程为

它表示以为圆心、为半径的圆. 

Ⅱ)法一:当时,直线的参数方程为 (为参数)

在直线上,且在圆内,把

代入中得

设两个实数根为,则两点所对应的参数为

 

法二:由(Ⅰ知圆的标准方程为

即圆心的坐标为半径为,点 在直线上,且在圆

圆心到直线的距离

所以弦的长满足

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数t满足f(0)=f(2)=2,f(1)=1.
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,2]时,求y=f(x)的值域;
(3)设h(x)=f(x)﹣mx在[1,3]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=2n+1an+2n+1,数列{bn}的前n项和为Tn.求满足不等式2010n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95﹪的把握认为选手成绩优秀与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注: ,其中.

0.10

0.05

0. 005

2.706

3.841

7.879

(Ⅱ)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;

(Ⅲ)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中的有2名选手的等级为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=x+ ﹣2.
(1)证明:函数g(x)在[ ,+∞)上是增函数;
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设,求的最小值;

(2)若曲线仅有一个交点,证明:曲线在点处有相同的切线,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a+a1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a
(Ⅱ)a +a
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组: ,并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在 的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从分数在70分以下的学生中随机抽取2名学生进行座谈会,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

同步练习册答案