科目:高中数学 来源: 题型:解答题
若正项数列满足条件:存在正整数,使得对一切都成立,则称数列为级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且是级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和;
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2014·随州模拟)已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式.
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和为Sn,且有a1=2,Sn=2an-2.
(1)求数列an的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com