精英家教网 > 高中数学 > 题目详情
6.已知A、B、C为△ABC的内角,tanA、tanB是关于x的方程x2+$\sqrt{3}$mx-m+1=0的两个实根.
(1)求C的大小;
(2)若AB=$\sqrt{6}$,AC=2,求△ABC的面积S.

分析 (1)利用韦达定理,两角和的正切公式,求得 tan(A+B) 的值,可得 A+B的值,从而求得C的值.
(2)利用正弦定理以及大边对大角求得B的值,可得A的值,从而求得△ABC的面积S=$\frac{1}{2}$•AB•AC•sinA 的值.

解答 解:(1)由题意可得tanA+tanB=-$\sqrt{3}$m,tanA•tanB=1-m,∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=-$\sqrt{3}$,
∴在△ABC中,A+B=$\frac{2π}{3}$,∴C=$\frac{π}{3}$.
(2)若AB=$\sqrt{6}$,AC=2,由正弦定理可得$\frac{\sqrt{6}}{sin\frac{π}{3}}$=$\frac{2}{sinB}$,∴sinB=$\frac{\sqrt{2}}{2}$.
再根据AC<AB,大边对大角可得 B<C,∴B=$\frac{π}{4}$,∴A=$\frac{2π}{3}$-$\frac{π}{4}$=$\frac{5π}{12}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{2}}{2}$•$\frac{1}{2}$+$\frac{\sqrt{2}}{2}•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
故△ABC的面积S=$\frac{1}{2}$•AB•AC•sinA=$\frac{1}{2}•\sqrt{6}•\sqrt{2}$•$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{\sqrt{6}+3\sqrt{2}}{4}$.

点评 本题主要考查韦达定理,两角和的正切公式,诱导公式,三角形的面积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知α,β∈(0,$\frac{π}{4}$),$\frac{tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{1}{4}$,且3sin β=sin(2α+β),则α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法
①角α是第一象限的角,则角2α是第一或第二象限的角;
②变量“正方体的棱长”和变量“正方体的体积”属于相关关系;
③掷一粒均匀的骰子,出现“向上的点数为偶数”的概率为$\frac{1}{2}$;
④向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$,
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|0≤x<4},B={x∈N|1≤x≤3},则A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=x3+3ax-2.
(1)当a为何值时,x轴为曲线y=g(x)的切线;
(2)求a的范围,使g(x)有极值,并求极大值与极小值的和;
(3)设f(x)=[$\frac{1}{3}$g′(x)-ax]ex-x2,若函数f(x)在x=0处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集U={1,2,3,4,5},集合A={1,2,4},集合B={1,5},则A∩(∁UB)等于(  )
A.{2,4}B.{1,2,4}C.{2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的可到函数f(x)满足:对任意x∈R有f(x)+f(-x)=$\frac{{x}^{2}}{2}$,且在区间[0,+∞)上有2f′(x)>x,若f(a)-f(2-a)≥a-1,则实数a的取值范围为a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2016项
a2016=(  )
A.$\frac{1}{63}$B.$\frac{1}{31}$C.$\frac{3}{61}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x3+ax2+bx在x=-1处取得极小值,在x=$\frac{2}{3}$处取得极大值
(1)求实数a,b的值;
(2)求f(x)的单调性.

查看答案和解析>>

同步练习册答案