分析 (1)利用韦达定理,两角和的正切公式,求得 tan(A+B) 的值,可得 A+B的值,从而求得C的值.
(2)利用正弦定理以及大边对大角求得B的值,可得A的值,从而求得△ABC的面积S=$\frac{1}{2}$•AB•AC•sinA 的值.
解答 解:(1)由题意可得tanA+tanB=-$\sqrt{3}$m,tanA•tanB=1-m,∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=-$\sqrt{3}$,
∴在△ABC中,A+B=$\frac{2π}{3}$,∴C=$\frac{π}{3}$.
(2)若AB=$\sqrt{6}$,AC=2,由正弦定理可得$\frac{\sqrt{6}}{sin\frac{π}{3}}$=$\frac{2}{sinB}$,∴sinB=$\frac{\sqrt{2}}{2}$.
再根据AC<AB,大边对大角可得 B<C,∴B=$\frac{π}{4}$,∴A=$\frac{2π}{3}$-$\frac{π}{4}$=$\frac{5π}{12}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{2}}{2}$•$\frac{1}{2}$+$\frac{\sqrt{2}}{2}•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
故△ABC的面积S=$\frac{1}{2}$•AB•AC•sinA=$\frac{1}{2}•\sqrt{6}•\sqrt{2}$•$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{\sqrt{6}+3\sqrt{2}}{4}$.
点评 本题主要考查韦达定理,两角和的正切公式,诱导公式,三角形的面积公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|1≤x≤3} | B. | {x|0≤x<4} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2,4} | B. | {1,2,4} | C. | {2,3,4,5} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{63}$ | B. | $\frac{1}{31}$ | C. | $\frac{3}{61}$ | D. | $\frac{1}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com