精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)确定a的所有可能取值,使得f(x)> ﹣e1x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

【答案】
(1)

解:由题意,f′(x)=2ax﹣ = ,x>0,

①当a≤0时,2ax2﹣1≤0,f′(x)≤0,f(x)在(0,+∞)上单调递减.

②当a>0时,f′(x)= ,当x∈(0, )时,f′(x)<0,

当x∈( ,+∞)时,f′(x)>0,

故f(x)在(0, )上单调递减,在( ,+∞)上单调递增


(2)

解:原不等式等价于f(x)﹣ +e1x>0在x∈(1.+∞)上恒成立,

一方面,令g(x)=f(x)﹣ +e1x=ax2﹣lnx﹣ +e1x﹣a,

只需g(x)在x∈(1.+∞)上恒大于0即可,

又∵g(1)=0,故g′(x)在x=1处必大于等于0.

令F(x)=g′(x)=2ax﹣ + ﹣e1x,g′(1)≥0,可得a

另一方面,当a 时,F′(x)=2a+ ≥1+ = +e1x

∵x∈(1,+∞),故x3+x﹣2>0,又e1x>0,故F′(x)在a 时恒大于0.

∴当a 时,F(x)在x∈(1,+∞)单调递增.

∴F(x)>F(1)=2a﹣1≥0,故g(x)也在x∈(1,+∞)单调递增.

∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.

综上,a


【解析】(I)利用导数的运算法则得出f′(x),通过对a分类讨论,利用一元二次方程与一元二次不等式的关系即可判断出其单调性;
(2)令g(x)=f(x)﹣ +e1x=ax2﹣lnx﹣ +e1x﹣a,可得g(1)=0,从而g′(1)≥0,解得得a , 又,当a 时,F′(x)=2a+ +e1x , 可得F′(x)在a 时恒大于0,即F(x)在x∈(1,+∞)单调递增.由F(x)>F(1)=2a﹣1≥0,可得g(x)也在x∈(1,+∞)单调递增,进而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,综合可得a所有可能取值.
本题主要考查了利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,考查了计算能力和转化思想,熟练掌握利用导数研究函数的单调性、极值、分类讨论的思想方法等是解题的关键.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知曲线C1(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρcos =-,曲线C3ρ=2sin θ.

(1)求曲线C1C2的交点M的直角坐标;

(2)设点AB分别为曲线C2C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2= ,证明:e1+e2++en

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=

(Ⅰ)若fx)是奇函数,求实数a的值;

(Ⅱ)当0<x≤1时,|f(2x)-fx)|≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+ax+b,实数x1x2满足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求证:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.
(1)若a>0,求函数f(x)的单调区间;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;
(3)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数fx)=是奇函数.

(1)求b的值,判断并用定义法证明fx)在R上的单调性;

(2)解不等式f(2x+1)+fx)<0.

查看答案和解析>>

同步练习册答案