精英家教网 > 高中数学 > 题目详情
20.已知实数a,b均大于0,且$({\frac{1}{a}+\frac{1}{b}})\sqrt{{a^2}+{b^2}}≥2m-4$总成立,则实数m的取值范围是(-∞,2+$\sqrt{2}$].

分析 求得($\frac{1}{a}$+$\frac{1}{b}$)$\sqrt{{a}^{2}+{b}^{2}}$的最小值,可得2m-4$≤2\sqrt{2}$,即可得到m的范围.

解答 解:实数a,b均大于0,($\frac{1}{a}$+$\frac{1}{b}$)$\sqrt{{a}^{2}+{b}^{2}}$≥2$\sqrt{\frac{1}{ab}}$•$\sqrt{2ab}$=2$\sqrt{2}$,
当且仅当a=b取得等号,
由题意可得2m-4$≤2\sqrt{2}$,
解得m≤2+$\sqrt{2}$.
故答案为:(-∞,2+$\sqrt{2}$].

点评 本题考查不等式的恒成立问题的解法,注意运用转化思想和基本不等式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.“x>1”是“$\frac{1}{x}<1$”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b表示两条不同直线,α,β,γ表示三个不同平面,给出下列命题:
①若α∩β=a,b?α,a⊥b,则α⊥β;
②若a?α,a垂直于β内的任意一条直线,则α⊥β;
③若α⊥β,α∩β=a,α∩γ=b,则a⊥b;
④若a不垂直于平面α,则a不可能垂直于平面α内的无数条直线;
⑤若a⊥α,a⊥β,则α∥β.
上述五个命题中,正确命题的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若O为△ABC所在平面内任一点,且满足($\overrightarrow{OB}$-$\overrightarrow{OC}$)•($\overrightarrow{OB}$+$\overrightarrow{OC}$-2$\overrightarrow{OA}$)=0,则△ABC的形状为(  )
A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足线性约束条件$\left\{\begin{array}{l}y-x≤3\\ x+y≤5\\ y≥λ\end{array}\right.$,若z=x+4y的最大值与最小值之差为5,则实数λ的值为(  )
A.3B.$\frac{7}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x+1)lnx-ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<\frac{1}{2}ln(n+1)$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x∈Z|(x+2)(x-1)<0},B={-2,-1},那么A∪B等于(  )
A.{-1}B.{-2,-1}C.{-2,-1,0}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右顶点分别为A、B,点M为C上不同于A、B的任意一点,则直线MA、MB的斜率之积为(  )
A.$\frac{1}{4}$B.-4C.-$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{3x}{a}-2{x^2}+lnx$,其中a为常数.
(1)若a=1,求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,2]上为单调增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案