分析 (1)推导出DF⊥FC,DF⊥BC,BC⊥BF,从而BC⊥面BDF,由此能证明面DBC⊥面DFB.
(2)分别以EF,FC,FD为x,y,z轴建立,空间直角坐标系F-xyz,利用向量法能求出当H为CD的中点时,二面角E-BH-C的余弦值为-$\frac{{\sqrt{30}}}{6}$.
解答 证明:(1)∵$DF=1,FC=2,DC=\sqrt{5}$,
∴DF2+FC2=DC2,∴DF⊥FC,
又∵DF⊥EF,∴DF⊥面EBCF,DF⊥BC,
在直角△EBF中,BE2+EF2=1+1=BF2,
BC2=2,FC2=BF2+BC2,∴BC⊥BF,
∴BC⊥面BDF,
∵BC?平面BDC,∴面DBC⊥面DFB.
解:(2)分别以EF,FC,FD为x,y,z轴建立,空间直角坐标系F-xyz,
则E(1,0,0),D(0,0,1),B(1,1,0),C(0,2,0),
设$\overrightarrow{GH}=λ\overrightarrow{CD}(0≤λ≤1)$,H(x,y,z),
则(x,y-2,z)=λ(0,-2,1),(x,y-2,z)=λ(0,-2,1)
∴H(0,2-2λ,λ),$\overrightarrow{EH}=(-1,2-2λ,λ),\overrightarrow{BH}=(-1,1-2λ,λ),\overrightarrow{BC}=(-1,1,0)$,
设面EBH的法向量为$\overrightarrow{m}$=(x1,y1,z1),面BHC的法向量为$\overrightarrow{n}$=(x2,y2,z2),
$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{EH}=0}\\{\overrightarrow m•\overrightarrow{BH}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{-{x_1}+(2-2λ){y_1}+λ{z_1}=0}\\{-{x_1}+(1-2λ){y_1}+λ{z_1}=0}\end{array}}\right.$,取z1=1,得$\overrightarrow{m}$=(λ,0,1).
$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{BC}=0}\\{\overrightarrow n•\overrightarrow{BH}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{-{x_2}+{y_2}=0}\\{-{x_2}+(1-2λ){y_2}+λ{z_2}=0}\end{array}}\right.$,取x2=1,得$\overrightarrow{n}$=(1,1,2),
∵二面角E-BH-C的余弦值为-$\frac{{\sqrt{30}}}{6}$,∴$|{\frac{\overrightarrow n•\overrightarrow m}{{|{\overrightarrow n}||{\overrightarrow m}|}}}|=\frac{{\sqrt{30}}}{6},|{\frac{λ+2}{{\sqrt{1+1+{2^2}}•\sqrt{{λ^2}+1}}}}|=\frac{{\sqrt{30}}}{6}$,
解得$λ=\frac{1}{2}$,
∴当H为CD的中点时,二面角E-BH-C的余弦值为-$\frac{{\sqrt{30}}}{6}$.
点评 本题考查面面垂直的证明,考查满足二面角的余弦值的点的位置的确定,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com