精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N* , 均有an , Sn 成等差数列,则an=

【答案】n
【解析】解:∵各项均为正数的数列{an}的前n项和为Sn
对任意n∈N* , 总有an , Sn , an2成等差数列,
∴2Sn=an+an2 , 2Sn1=an1+an12
两式相减,得2an=an+an2﹣an1﹣an12
∴an+an1=(an+an1)(an﹣an1),
又an , an1为正数,∴an﹣an1=1,n≥2,
∴{an}是公差为1的等差数列,
当n=1时,2S1=a1+a12 , 得a1=1,或a1=0(舍),
∴an=n.
所以答案是:n.
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2﹣bx+3.
(1)若函数f(x)为R上的偶函数,求b的值.
(2)若函数f(x)在(﹣∞,2]上单调递减,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)求;(2)证明: 存在唯一的极大值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(4﹣x2)(ax2+bx+5)的图象关于直线 对称,则f(x)的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)求函数的极大值点;

(2)当时,若在上至少存在一点,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数,其导函数为,若对任意的实数,都有恒成立,则使成立的实数的取值范围为(  )

A. B. (﹣∞,﹣1)∪(1,+∞)

C. (﹣1,1) D. (﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x∈(﹣∞,0)时,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知斜三棱柱 在底面上的射影恰为的中点,且.

(1)求证: 平面

(2)求到平面的距离;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案