精英家教网 > 高中数学 > 题目详情
7.在整数集中,不等式$\frac{2x+3}{2-x}$≥1的解集为{1}.

分析 移项,通分母,结合x∈Z,可得结论.

解答 解:不等式可化为$\frac{3x-1}{2-x}$≥0,
∴$\frac{1}{3}≤x<2$,
∵x∈Z,
∴x=1,
∴在整数集中,不等式$\frac{2x+3}{2-x}$≥1的解集为{1}.
故答案为:{1}.

点评 本题考查分式不等式的解法,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知集合A=(-1,2],集合B={x|x2-2ax+a2-1≤0}.若B∩∁RA=B,则实数a的取值范围(-∞,-2]∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取30名男生和20名女生,给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人) 
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足条件$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,若不等式3x-y+1-a≥0恒成立,则a的取值范围为(  )
A.a≥-8B.a≤-8C.a≤6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:logab•logbc•logca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=$\frac{1}{x}$过P(4,$\frac{1}{4}$)的切线方程为(  )
A.x+16y-8=0B.16x+y-8=0C.x-16y+8=0D.x+16y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数y=f(x)满足:f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x2,则f(2015)的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知0≤x≤$\frac{π}{2}$,求函数y=sinx-2asinx的最大值M(a)与最小值m(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大小;
②在棱PC上存在点M,满足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直线AM与平面PBC所成的角为45°,求λ的值.

查看答案和解析>>

同步练习册答案