精英家教网 > 高中数学 > 题目详情

【题目】已知函数,下列命题:

为偶函数;的最大值为2

内的零点个数为18

的任何一个极大值都大于1

其中所有正确命题的序号是_____

【答案】①②④

【解析】

由于函数,根据奇偶性的定义和图象与性质,分析函数的奇偶性、最值、对称性和极值,从而可判断命题的真假.

解:对于,函数,定义域为,且满足

所以函数为偶函数,故正确;

对于,因为,所以

又因为,即时,取得最大值为2,故正确;

对于的图象如图所示,可知在内有10个零点,

可知为偶函数,其零点关于原点对称,

所以内的零点个数为20,所以错误;

对于④,由于是偶函数,则只需考虑的情况,

此时,则

的图象可知,

在每一个区间上,时,有2个解

且当时,,则单调递增,

时,,则单调递减,

,所以得极大值为

所以的任何一个极大值都大于1,故④正确.

综上知,正确的命题序号是①②④

故答案为:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、 “赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线是由到两个定点和点的距离之积等于的所有点组成的.对于曲线,有下列四个结论:

①曲线是轴对称图形;

②曲线是中心对称图形;

③曲线上所有的点都在单位圆内;

其中,所有正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

是函数的极值点,求曲线在点处的切线方程;

若函数在区间上为单调递减函数,求实数a的取值范围;

mn为正实数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)

问:

(1)把y表示为x的函数,并求其定义域;

(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离,等于它到直线的距离.

(1)求点的轨迹的方程;

2)过点任意作互相垂直的两条直线,分别交曲线于点

设线段的中点分别为,求证:直线恒过一个定点;

3)在(2)的条件下,求面积的最小值

查看答案和解析>>

同步练习册答案