精英家教网 > 高中数学 > 题目详情

设数列{an}的各项均为正数,前n项和为Sn,已知数学公式
(1)证明数列{an}是等差数列,并求其通项公式;
(2)证明:对任意m、k、p∈N*,m+p=2k,都有数学公式
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

解:(1)∵,∴当n≥2时,
两式相减得
∴(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
,∴a1=1,
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=2n-1;
(2)由(1)知

于是
=

(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则
于是
=
将m+p=2k代入得,
∴Sm+Sp≥2Sk

=

分析:(1)由所给等式得,当n≥2时,,然后两式作差得an-an-1=2,由此可判断数列{an}是等差数列,利用通项公式即可求得;
(2)利用等差数列求和公式表示出+-,再用基本不等式证明该式大于等于0即可;
(3)先用作差法证明Sm+Sp≥2Sk,再用基本不等式证明,由此即可证明结论;
点评:本题考查等差数列的求和公式、通项公式,基本不等式的应用,考查学生综合运用所学知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案