精英家教网 > 高中数学 > 题目详情
椭圆的焦点为,点在椭圆上,且线段的中点恰好在轴上,,则            .

试题分析:易知,原点也是的中点,所以平行于轴,因为,所以,
,根据椭圆定义可知,所以,解得,所以,故,所以7.
点评:本题重点考查椭圆的几何性质,考查椭圆定义的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点.
(1)求椭圆的方程;
(2)求弦的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左焦点为F
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的右焦点的直线交椭圆于于两点,令,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的两个焦点,点在椭圆上,且,则△ 的面积为          .

查看答案和解析>>

同步练习册答案