喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (Ⅰ)根据题意,求出50名学生中,喜爱打篮球的学生数,即可补充完整列联表;
(Ⅱ)计算观测值k2,对照临界值表,即可得出结论;
(Ⅲ)利用列举法求出基本事件,计算所求的概率.
解答 解:(Ⅰ)根据题意,这50名学生中,喜爱打篮球的学生为50×$\frac{3}{5}$=30人,
所以不喜爱打篮球的学生为20人,
由此补充列联表,如下;
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
点评 本题考查了列联表以及独立性检验问题,也考查了用列举法求古典概型的概率问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2,2,3,1 | B. | 2,3,-1,2,4 | C. | 2,2,2,2,2,2 | D. | 2,4,0,2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{8}{15}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $-\sqrt{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com