分析 (1)由题意,利用正弦定理可得sinBsinA+sinBcosA=sinC=sin(A+B),由此可求B;
(2)△ABD中,由正弦定理可得$\frac{AB}{sin105°}=\frac{AD}{sin45°}=\frac{2}{sin30°}$,求出AB,AD,AC,即可求△ABC的面积.
解答 解:(1)由题意,利用正弦定理可得sinBsinA+sinBcosA=sinC=sin(A+B),
整理可得sinB=cosB,∴B=$\frac{π}{4}$;
(2)由AD=AC,可知∠ACD=∠ADC.
设∠BAD=∠DAC=α,∠ACD=∠ADC=γ,则$\left\{\begin{array}{l}{45°+2α+β=180°}\\{α+2β=180°}\end{array}\right.$,
∴α=30°,β=75°
△ABD中,由正弦定理可得$\frac{AB}{sin105°}=\frac{AD}{sin45°}=\frac{2}{sin30°}$,
∴AB=$\sqrt{6}+\sqrt{2}$,AD=2$\sqrt{2}$,∴AC=2$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}AB•AC•sin2α$=3+$\sqrt{3}$.
点评 本题考查正弦定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1} | B. | {2} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\underset{lim}{x→∞}$$\frac{sinx}{x}$=1 | B. | $\underset{lim}{x→0}$$\frac{sinx}{x}$=0 | C. | $\underset{lim}{x→0}$xsin$\frac{1}{x}$=1 | D. | $\underset{lim}{x→∞}$xsin$\frac{1}{x}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com