精英家教网 > 高中数学 > 题目详情
(2003•北京)如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.
(Ⅰ)写出椭圆的方程及准线方程;
(Ⅱ)过线段OA上异于O,A的任一点K作OA的垂线,交椭圆于P,P1两点,直线A1P与AP1交于点M.求证:点M在双曲线
x2
25
-
y2
9
=1
上.
分析:(I)根据图形,确定几何量,即可写出椭圆的方程及准线方程;
(Ⅱ)设出直线A1P,P1A的方程,求出直线A1P与AP1的交点M的坐标,验证
x2
25
-
y2
9
=1
即可.
解答:(Ⅰ)解:由图可知,a=5,c=4,∴b=
a2-c2
=3

该椭圆的方程为
x2
25
+
y2
9
=1

准线方程为x=±
25
4

(Ⅱ)证明:设K点坐标(x0,0),点P、P1的坐标分别记为(x0,y0),(x0,-y0),其中0<x0<5,则
x
2
0
25
+
y
2
0
9
=1
,…①
直线A1P,P1A的方程分别为:(x0+5)y=y0(x+5),…②
(5-x0)y=y0(x-5).…③
②式除以③式得
x0+5
5-x0
=
x+5
x-5
,化简上式得x=
25
x0
,代入②式得y=
5y0
x0

于是,直线A1P与AP1的交点M的坐标为(
25
x0
5y0
x0
)

因为
1
25
(
25
x0
)2-
1
9
(
5y0
x0
)2=
25
x
2
0
-
25
x
2
0
(1-
x
2
0
25
)=1

所以,直线A1P与AP1的交点M在双曲线
x2
25
-
y2
9
=1
上.
点评:本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2003•北京)如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=
3
3
2
,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,已知椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r)(b>r>0
(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;
(Ⅱ)设直线y=k1x与椭圆交于C(x1,y1),D(x2,y2)(y2>0),直线y=k2x与椭圆次于G(x3,y3),H(x4,y4)(y4>0).求证:
k1x1x2
x1+x2
=
k1x3x4
x3+x4

(Ⅲ)对于(Ⅱ)中的在C,D,G,H,设CH交x轴于P点,GD交x轴于Q点,求证:|OP|=|OQ|
(证明过程不考虑CH或GD垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AB=a.
(Ⅰ)求证:直线A1D⊥B1C1
(Ⅱ)求点D到平面ACC1的距离;
(Ⅲ)判断A1B与平面ADC1的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)有三个新兴城镇分别位于A、B、C三点处,且AB=AC=a,BC=2b,今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处(建立坐标系如图).
(Ⅰ)若希望点P到三镇距离的平方和最小,则P应位于何处?
(Ⅱ)若希望点P到三镇的最远距离为最小,则P应位于何处?

查看答案和解析>>

同步练习册答案