精英家教网 > 高中数学 > 题目详情

【题目】某公司为了激励业务员的积极性,对业绩在60万到200万的业务员进行奖励奖励方案遵循以下原则:奖金y(单位:万元)随着业绩值x(单位:万元)的增加而增加,且奖金不低于1.5万元同时奖金不超过业绩值的5%.

1)若某业务员的业绩为100万核定可得4万元奖金,若该公司用函数k为常数)作为奖励函数模型,则业绩200万元的业务员可以得到多少奖励?(已知

2)若采用函数作为奖励函数模型试确定最小的正整数a的值.

【答案】1万元;(2481

【解析】

1)将代入求出参数的值,即可求出函数解析式,再将代入求值即可;

2)根据所给函数模型,函数在上单调递增,所以,且即可求出参数取值范围,从而得到最小正整数的值.

解:(1)对于函数模型为常数),

时,,代入解得,即

时,是增函数,

时,,∴业绩200万元的业务员可以得到万元奖励.

2)对于函数模型.

因为为正整数,所以函数在递增;,解得

要使成立,即恒成立,函数上的最大值为480.2,所以.综上可知

即满足条件的最小正整数的值为481.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法正确的是________.

的最大值点.

②函数有且只有1个零点.

③存在正实数,使得恒成立.

④对任意两个不相等的正实数,若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市工业部门计划对所辖中小型企业推行节能降耗技术改造,下面是对所辖企业是否支持技术改造进行的问卷调查的结果:

支持

不支持

合计

中型企业

40

小型企业

240

合计

560

已知从这560家企业中随机抽取1家,抽到支持技术改造的企业的概率为.

(1)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?

(2)从上述支持节能降耗的中小企业中按分层抽样的方法抽出12家企业,然后从这12家企业选出9家进行奖励,分别奖励中型企业50万元,小型企业10万元.设为所发奖励的金额.

的分布列和期望.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某种设备的使用年限(年)与所支出的维修费用 (万元)有如下统计:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知.

(1)求

(2)具有线性相关关系,求出线性回归方程;

(3)估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,已知直线与抛物线C交于A,B两点(A,B两点分别在轴的上、下方).

(1)求证:

(2)已知弦长,试求:过A,B两点,且与直线相切的圆D的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在定义域上是单调增函数,求实数a的取值范围;

2)讨论的极值点的个数;

3)若有两个极值点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,错误的是( )

A.将一组数据中的每个数据都加上同一个常数后,方差不变

B.对于回归方程,变量每增加一个单位,平均增加5个单位

C.线性回归方程所对应的直线必过点

D.在一个列联表中,由计算得,则有的把握说两个变量有关

本题可以参考独立性检验临界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位拟从40名员工中选1人赠送电影票,可采用下面两种选法:

选法一:将这40名员工按1~40进行编号,并相应地制作号码为14040个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的员工幸运入选;

选法二:将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名员工逐一从中摸取一个球,则摸到红球的员工幸运入选.试问:

1)这两种选法是否都是抽签法,为什么?

2)这两种选法中每名员工被选中的可能性是否相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形的中点为折痕将折起使点到达点的位置且平面平面中点.

(1)求证:平面

(2)若求三棱锥的高.

查看答案和解析>>

同步练习册答案