(14分) (理科)如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,
M为CD的中点.
(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数,
使,且P点到A、B 的距离和为定值,
求点P的轨迹E的方程;
(3)过的直线与轨迹E交于P、Q两点,且,求此直线方程.
科目:高中数学 来源:2014届江西南昌八一、洪都、麻丘中学高二上期中数学试卷(解析版) 题型:解答题
(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,交直线于点,且,,
求证:为定值,并计算出该定值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市黄浦区高三上学期期终基础学业测评理科数学试卷 题型:解答题
(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
(理科)已知四棱锥的底面是直角梯形, ,,
侧面为正三角形,,.如图4所示.
(1) 证明: 平面;
(2) 求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源:2010年四川省高二下学期5月月考数学试题 题型:解答题
(本题满分14分理科做)已知函数的图象经过点和,记
(Ⅰ)求数列的通项公式;
(Ⅱ)设,若,求的最小值;
(Ⅲ)求使不等式对一切均成立的最大实数.
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(文科做)(本题满分14分)如图,在长方体
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC-D的大小为.
(理科做)(本题满分14分)
如图,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M为侧棱CC1上一点,AM⊥BA1.
(Ⅰ)求证:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求点C到平面ABM的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com