精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中$\frac{π}{3}<θ+\frac{π}{3}<\frac{2π}{3}$
(1)写出f(x)的奇偶性与单调性(不要求证明);
(2)若函数y=f(x)的定义域为(-1,1),求满足不等式f(1-m)+f(1-m2)<0的实数m的取值集合;
(3)当x∈(-∞,2)时,f(x)-4的值恒为负,求a的取值范围.

分析 (1)由已知中函数的解析式,可得f(x)是R上的奇函数,且在R上单调递增.
(2)由题意可得 f(1-m)<-f(1-m2)=f(m2-1),故有-1<1-m<m2-1<1,由此解得m的范围.
(3)要使f(x)-4的值恒为负,只要f(2)-4≤0,即 $\frac{a}{{{a^2}-1}}({{a^2}-{a^{-2}}})-4=\frac{{{a^2}+1}}{a}-4≤0$,由此求得a的范围.

解答 解:(1)∵函数f(x)=$\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,
∴f(x)是R上的奇函数,且在R上单调递增.
(2)由f(x)的奇偶性可得 f(1-m)<-f(1-m2)=f(m2-1),
由f(x)的定义域及单调性可得-1<1-m<m2-1<1.
解不等式组可得 $1<m<\sqrt{2}$.
(3)由于f(x)在(-∞,2)上单调递增,要f(x)-4恒负,
只需f(2)-4≤0,
即$\frac{a}{{{a^2}-1}}({{a^2}-{a^{-2}}})-4=\frac{{{a^2}+1}}{a}-4≤0$
解之得:$2-\sqrt{3}≤a≤2+\sqrt{3}$.
结合a>0且a≠1可得:$2-\sqrt{3}≤a≤2+\sqrt{3}$且a≠1.

点评 本题主要考查函数的单调性和奇偶性,利用函数的单调性解不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=$\sqrt{13}$,SB=$\sqrt{29}$,
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,⊙O的两条割线与⊙O交于A、B、C、D,圆心O在PAB上,若PC=6,CD=7$\frac{1}{3}$,PO=12,则AB=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积;
(3)若直线x=-t(0<t<1把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>0,b>0,2c>a+b,求证:
(1)c2>ab;
(2)c-$\sqrt{{c}^{2}-ab}$<a<c+$\sqrt{{c}^{2}-ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.若直线l与曲线C相交于A、B两点,则|AB|=(  )
A.$3\sqrt{5}$B.$\sqrt{15}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某学校进行体检,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50人身材介于155cm到195cm之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],并按此分组绘制如下图所示的频率分布直方图,其中,第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第七组的人数为3人.
(1)求第六组的频率;
(2)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中第六组至第八组学生身高的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin(2x+$\frac{π}{3}$),x∈[0,2π]的单调减区间是[$\frac{π}{12}$,$\frac{7π}{12}$]和[$\frac{13π}{12}$,$\frac{19π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=-x2-ax+1,g(x)=$\frac{(ax^2+x+a)}{{x}^{2}}$,
(1)若f(x)+b=0在[1,2]上有两个不等实根,求g(1)+b的取值范围;
(2)若存在x1∈[1,2],使得对任意的x2∈[$\frac{1}{2}$,1],都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案