精英家教网 > 高中数学 > 题目详情
对定义域分别是Df、Dg的函数y=f (x)、y=g (x),规定:h(x)=
f(x)•g(x), 当x∈Df且x∈Dg
 f(x) ,当x∈Df且x∉Dg
 g(x) ,当x∉Df且x∈Dg.

(1)若函数f (x)=
1
x-1
,g (x)=x2,写出函数h(x)的解析式;
(2)求问题(1)中函数h(x)的值域;
(3)请设计一个定义域为R的函数y=f (x),及一个实常数a的值,使得f (x)•f (x+a)=x4+x2+1,并予证明.
考点:函数的值域
专题:函数的性质及应用
分析:(1)把f(x),g(x)代入,从而求出函数的解析式;
(2)分别讨论x=1,x≠1的情况,从而求出函数的值域问题;
(3)根据x4+x2+1=(x2+1)2-x2=(x2+x+1)(x2-x+1)=(x2+x+1)[(x-1)2+(x-1)+1],从而得出.
解答: 解:(1)h (x)=
x2
x-1
,x∈(-∞,  1)∪(1, +∞)
1  , x=1

(2)当x=1时,h (1)=1
当x≠1时,y=
x2
x-1
,即x2-yx+y=0
由关于x的方程x2-yx+y=0有实数解(显然解不为1)知
△=(-y)2-4y≥0,得y≥4或y≤0,
∴函数h (x)的值域(-∞,0]∪{1}∪[4,+∞),
(3)∵x4+x2+1=(x2+1)2-x2=(x2+x+1)(x2-x+1)
=(x2+x+1)[(x-1)2+(x-1)+1]
∴可取f (x)=x2+x+1,a=-1
注:取f (x)=x2-x+1,a=1;f (x)=-x2+x-1,a=1;
f (x)=-x2-x-1,a=-1均可.
点评:本题考查了求函数的解析式问题,求函数的值域问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

备受瞩目的巴西世界杯正在如火如荼的进行,为确保总决赛的顺利进行,组委会决定在位于里约热内卢的马拉卡纳体育场外临时围建一个矩形观众候场区,总面积为72m2(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为2m的入口.现已知铁栏杆的租用费用为100元/m.设该矩形区域的长为x(单位:m),租用铁栏杆的总费用为y(单位:元)
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使得租用此区域所用铁栏杆所需费用最小,并求出最小最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算y=f(x)函数值的程序框图.   
(Ⅰ)请写出程序对应函数f(x)的表达式;
(Ⅱ)若输出的结果是正数,求输入的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(x2-x-2)的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为(  )
A、(-24,7)
B、(-∞,-24)∪(7,+∞)
C、(-7,24)
D、(-∞,-7)∪(24,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

α是第二象限角,P(x,
5
)为其终边上一点,cosα=
2
4
x,则sinα的值为(  )
A、
10
4
B、
6
4
C、
2
4
D、-
10
4

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(-2,m)和B(m,4)的直线与直线l:x-2y-1=0垂直,则m的值为(  )
A、10B、2C、0D、-8

查看答案和解析>>

科目:高中数学 来源: 题型:

x
1
3
+x-
1
3
=3,则x+x-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R,a>b,则下列不等式成立的是(  )
A、
a
c2+1
b
c2+1
B、a2>b2
C、
1
a
1
b
D、a|c|>b|c|

查看答案和解析>>

同步练习册答案