精英家教网 > 高中数学 > 题目详情
10.某学校的组织结构图如下:

则保卫科的直接领导是副校长乙.

分析 根据题意,在某校的组织结构图中,可分析出保卫科的直接领导为副校长乙,从而得出答案.

解答 解:由结构图可知,保卫科的直接领导为副校长乙.
故答案为:副校长乙.

点评 本题考查了结构图的应用问题,解题时应读懂题目中的结构图,分析出父子节点之间的从属关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若函数f(x)在[m,n](m<n)上的值域恰好为[m,n](m<n),则称[m,n]为函数f(x)的一个“等值映射区间”,已知下列函数:(1)y=x2-1;(2)y=2+log2x;(3)y=2x-1;(4)y=$\frac{1}{x-1}$.其中,存在唯一一个“等值映射区间”的函数序号为(2),(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos(2x+φ),且${∫}_{0}^{\frac{2}{3}π}$f(x)dx=0,则下列说法正确的是(  )
A.f(x)的一条对称轴为x=$\frac{5π}{12}$
B.存在φ使得f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减
C.f(x)的一个对称中心为($\frac{5π}{12}$,0)
D.存在φ使得f(x)在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,此即V=kD3,欧几里得未给出k的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式V=kD3中的常数k称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式V=kD3求体积(在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长).假设运用此体积公式求得球(直径为a)、等边圆柱(底面圆的直径为a)、正方体(棱长为a)的“玉积率”分别为k1,k2,k3,那么k1:k2:k3=$\frac{π}{6}$:$\frac{π}{4}$:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,平面ABEF⊥平面CBED,四边形ABEF为直角梯形,∠AFE=∠FEB=90°,四边形CBED为等腰梯形,CD∥BE,且BE=2AF=2CD=2BC=2EF=4.
(Ⅰ)若梯形CBED内有一点G,使得FG∥平面ABC,求点G的轨迹;
(Ⅱ)求平面ABC与平面ACDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆过(1,2),(-3,2)和(-1,2$\sqrt{2}$).
(1)求圆的方程;
(2)若过点P(-1,2)的弦AB长为2$\sqrt{7}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.阅读下面材料:
根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
类比上述推证方法,根据两角和与差的余弦公式,证明:
cosA-cosB=-2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“开门大吉”是某电视台推出的游戏节目,选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由:(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一枚质地均匀的骰子抛掷两次,落地时朝上的点数之和为6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

同步练习册答案