精英家教网 > 高中数学 > 题目详情
1.已知x,y满足$\left\{\begin{array}{l}{x-y+5≤0}\\{x≤3}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{y+5}{x}$的取值范围为(  )
A.(-1,$\frac{13}{3}$]B.(-∞,-1)∪[$\frac{13}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{2}{3}$]∪[$\frac{1}{3}$,+∞)

分析 作出不等式组对应的平面区域,利用直线斜率的几何意义,进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
z=$\frac{y+5}{x}$的几何意义是区域内的点到定点D(0,-5)的斜率,
由图象z≥kAD,或k<kBC=-1,
由$\left\{\begin{array}{l}{x-y+5=0}\\{x=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=8}\end{array}\right.$,即A(3,8),
此时kAD=$\frac{8+5}{3}$=$\frac{13}{3}$,
故z≥$\frac{13}{3}$,或k<-1,
故选:B

点评 本题主要考查线性规划的应用,利用直线的斜率公式结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)的导数为题f′(x)若函数在区间f(x)在区间(a,b)内无极值点,则f'(x)在区间(a,b)内无零点.命题P的逆命题,否命题,逆否命题中,正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点P(6,m)为双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的点,求点P到双曲线右焦点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个球内切于一个圆锥,且圆锥的高等于球的直径的两倍,试证明圆锥的全面积等于球表面积的两倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商品的价格为80元时,月销售量为10000件,若价格每降低2元.需要量就会增加1000件,如果不考虑其他因素:(1)试求这商品的月销售量与价格之间的函数关系式;
(2)若这种商品的进货价是每件40元,销售价为多少元时,月利润收人最多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且Sn+2=2an,且数列{bn}满足b1=1,bn+1=bn+2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{1-(-1)^{n}}{2}$an+$\frac{1+(-1)^{n}}{2}$bn,求数列{cn}的前2n项和T2n
(3)求数列{an•bn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=4x+3,g(x)=x2,求满足f[g(x)]=g[f(x)]的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知sinA=cosBcosC,则必有(  )
A.sinB+sinC为常数B.cosB+cosC为常数C.tanB+tanC为常数D.sinB+cosC为常数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}是等比数列an>0若a2,a48是方程2x2一7x+6=0两根,则a1•a2•a25•a48•a49=9$\sqrt{3}$.

查看答案和解析>>

同步练习册答案