1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称;
(2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.
(1)设P(x0,y0)是y=f(x)图象上任意一点,
则y0=f(x0).
又P点关于x=m的对称点为P′,则P′的坐标为
(2m-x0,y0).由已知f(m+x)=f(m-x),得
f(2m-x0)=f(m+(m-x0))
=f(m-(m-x0))=f(x0)=y0.即
P′(2m-x0,y0)在y=f(x)的图象上.
∴y=f(x)的图象关于直线x=m对称.
(2)对定义域内的任意x,有f(2-x)=f(2+x)恒成立.
∴|a(2-x)-1|=|a(2+x)-1|恒成立,
即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.
又∵a≠0,∴2a-1=0,得 a=.
【方法技巧】函数对称问题解题技巧
(1)证明函数图象的对称性,只需证明其图象上的任意一点关于对称中心(对称轴)的对称点仍在图象上即可.
(2)①若f(a+x)=f(a-x),x∈R恒成立,
则y=f(x)的图象关于直线x=a对称;
②若f(a+x)=-f(a-x),x∈R恒成立,
则y=f(x)的图象关于点(a,0)对称.
科目:高中数学 来源: 题型:
已知函数y=f(x)同时满足以下五个条件:
(1)f(x+1)的定义域是[-3,1];
(2)f(x)是奇函数;
(3)在[-2,0)上,f′(x)>0;
(4)f(-1)=0;
(5)f(x)既有最大值又有最小值.
请画出函数y=f(x)的一个图象,并写出相应于这个图象的函数解析式.
查看答案和解析>>
科目:高中数学 来源:福建省09-10学年高二第二学期期末考试数学试题文科 题型:填空题
已知函数y=f(x)在点(2,f (2))处的切线方程为y=-3x+1, 则f(2)+(2)= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com