精英家教网 > 高中数学 > 题目详情

【题目】两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:

组:10111213141516

组:121315161714

假设所有病人的康复时间互相独立,从两组随机各选1人,组选出的人记为甲,组选出的

人记为乙.

)求甲的康复时间不少于14天的概率;

)如果,求甲的康复时间比乙的康复时间长的概率;

)当为何值时,两组病人康复时间的方差相等?(结论不要求证明)

【答案】,(,(

【解析】

试题针对甲有7种情况,康复时间不少于14天有3种情况,概率为;如果,甲、乙随机各取一人有49种情况,用列举法列出甲的康复时间比乙的康复时间长的情况有10种,概率为,由于A组数据为10111213141516B组数据调整为121314151617,或121314151617,由于两组病人康复时间的方差相等,即波动相同,所以.

试题解析:(Ⅰ)甲有7种取法,康复时间不少于14天的有3种取法,所以概率

(Ⅱ) 如果,从两组随机各选1人,组选出的人记为甲,组选出的人记为乙共有49种取法,甲的康复时间比乙的康复时间长的列举如下:(1312),(1412),(1413),(1512),(1513),(15,14),1612)(1613,1615,(16,14)10种取法,所以概率.

(Ⅲ)B组数据调整为121314151617,或121314151617,可见当时,与A组数据方差相等.(可利用方差公式加以证明,但本题不需要)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年某市有2万多文科考生参加高考,除去成绩为分(含分)以上的3人与成绩为分(不含分)以下的3836人,还有约1.9万文科考生的成绩集中在内,其成绩的频率分布如下表所示:

分数段

频率

0.108

0.133

0.161

0.183

分数段

频率

0.193

0.154

0.061

0.007

(Ⅰ)试估计该次高考成绩在内文科考生的平均分(精确到);

(Ⅱ)一考生填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取3人,并在同分数考生中随机录取,求该考生不被该志愿录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,要推进绿色发展,倡导“简约知适度、绿色低碳”的生活方式,开展创建“低碳生活,绿色出行”等行动.在这一号召下,越来越多的人秉承“能走不骑,能骑不坐,能坐不开”的出行理念,尽可能采取乘坐公交车骑自行车或步行等方式出行,减少交通拥堵,共建清洁、畅通高效的城市生活环境.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:

次数

人数

年龄

18岁至31岁

8

12

20

60

140

150

32岁至44岁

12

28

20

140

60

150

45岁至59岁

25

50

80

100

225

450

60岁及以上

25

10

10

19

4

2

联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.

(I)若从被抽查的该月骑车次数在的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在之间,另一名幸运者该月骑车次数在之间的概率;

(Ⅱ)用样本估计总体的思想,解决如下问题:

()估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;

() 若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴, 的中点为,过且垂直于线段的直线交射线于点

(I)证明:点在直线上;

(Ⅱ)当四边形是平行四边形时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCBCD所在平面互相垂直,且ABBCBD=2,ABCDBC=120°,EF分别为ACDC的中点.

(1)求证:EFBC

(2)求二面角EBFC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:

温度x/

21

23

25

27

29

32

35

产卵个数y/

7

11

21

24

66

115

325

(I)根据散点图判断,哪一个适宜作为产卵数关于温度的回归方程类型(给出判断即可,不必说明理由);

(II)根据(I)的判断结果及表中数据,建立关于的回归方程;

Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).

附:可能用到的公式及数据表中(表中 = = =

27.430

3.612

81.290

147.700

2763.764

705.592

40.180

对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面.设分别为中点.

1)求证:平面

2)求证:平面

3)试问在线段上是否存在点,使得过三点的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求处切线方程;

(2)讨论的单调区间;

(3)试判断的实根个数说明理由.

查看答案和解析>>

同步练习册答案