精英家教网 > 高中数学 > 题目详情

【题目】设人的某一特征(如眼睛的大小)是由他的一对基因所决定,d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,:

(1)1个孩子显露显性特征的概率是多少?

(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?

【答案】(1) ; (2) 这种说法不正确

【解析】试题分析:孩子的一对基因为ddrrrd的概率分别为,孩子由显性基因决定的特征是具有ddrd,所以

(1)一个孩子由显性基因决定的特征的概率为

(2)因为两个孩子如果都不具有显性基因决定的特征,即两个孩子都具有rr基因的纯隐性特征,其概率为,所以两个孩子中至少有一个显性基因决定特征的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三点A(-1,1,2),B(1,2,-1),C(a,0,3),是否存在实数a,使ABC共线?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查某种商品在过去50天的销量和价格均为销售时间t(天)的函数且销售量近似地满足f(t)=-2t+200(1t50,tN)前30天价格为g(t)=t+30(1≤t≤30,tN)后20天价格为g(t)=45(31≤t≤50,tN).

(1)写出该种商品的日销售额S与时间t的函数关系式;

(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:

摄氏温度/

-5

0

4

7

12

15

19

23

27

31

36

热饮杯数

156

150

132

128

130

116

104

89

93

76

54

(1)画出散点图;

(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;

(3)求回归方程;

(4)如果某天的气温是,预测这天卖出的热饮杯数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上午、下午参加身高与体重立定跳远肺活量握力台阶五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测握力,下午不测台阶,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )

A. 264 B. 72 C. 266 D. 274

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大.

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.

③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中, ,则.

④如果两个变量之间不存在着线性关系,那么根据它们的一组数据不能写出一个线性方程

正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当16≤x≤24时,这种食品市场日供应量p万千克与市场日需求量q万千克近似地满足关系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).当p=q时的市场价格称为市场平衡价格.

(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域.

(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的偶函数,当时,有,且当时, ,给出下列命题:

的值为;②函数在定义域上为周期是2的周期函数;

③直线与函数的图像有1个交点;④函数的值域为.

其中正确的命题序号有__________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在定义域内的极值点的个数;

(2)设,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案