精英家教网 > 高中数学 > 题目详情
若a>b>c,则使
1
a-b
+
1
b-c
k
a-c
恒成立的最大的正整数k为(  )
A、2B、3C、4D、5
分析:由题意可得
a-c
a-b
+
a-c
b-c
=
a-b+b-c
a-b
+
a-b+b-c
b-c
=2+
b-c
a-b
+
a-b
b-c
,利用基本不等式求得其最小值等于4,故 k≤4.
解答:解:∵a>b>c,∴a-b>0,b-c>0,a-c>0,且a-c=a-b+b-c.
a-c
a-b
+
a-c
b-c
=
a-b+b-c
a-b
+
a-b+b-c
b-c
=2+
b-c
a-b
+
a-b
b-c
≥2+2=4

k ≤ 
a-c
a-b
+
a-c
b-c
,k≤4,
故k的最大整数为4,
故选C.
点评:本题考查函数的恒成立问题,不等式性质的应用,求得
a-c
a-b
+
a-c
b-c
≥ 4
,是解题的难点和关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①若A、B、C、D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=
0

b
0
,则
a
b
共线的充要条件是:?λ∈R,使
a
b

③若
a
b
共线,则表示
a
b
的有向线段所在直线平行;
④对空间任意一点O与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R)且x+y+z=1,则P、A、B、C四点共面.
其中不正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足
RP
=-2
PF
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使
SP
2
取最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?说明理由;
(Ⅲ)记I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>c,则使不等式
1
a-b
+
1
b-c
+
k
c-a
>0
恒成立的实数k的取值范围是(  )
A、(-∞,1]
B、(-∞,1)
C、(-∞,4]
D、(-∞,4)

查看答案和解析>>

同步练习册答案