精英家教网 > 高中数学 > 题目详情
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为
(1)详见解析;(2);(3)上存在满足条件.

试题分析:(1)条件中出现了中点,需要证明的结论为线面平行,因此可以考虑构造三角形中位线证明线线平行,因此在矩形中,连结,则点的中点.则的中位线,从而,又平面平面可知平面;(2)题中出现了线面垂直,因此可以考虑建立空间直角坐标系利用空间向量求解,可以为原点,所在的直线分别为
轴,建立空间直角坐标系,根据条件中数据,可先写出点的坐标:

从而可以得到向量的坐标:,因此可求得平面的法向量为,设直线与平面所成角为,利用即可求得;
(3)假设存在满足已知条件的,由,得,可分别求得平面的法向量为,再由平面的法向量,则由两平面所成锐二面角大小为可以得到关于的方程:,可解得(舍去),方程有解,即说明上存在满足条件.
试题解析:(1)如图,在矩形中,连结,则点的中点.在中,点的中点,点的中点,∴,又∵平面平面,∴平面
(2)由,则,由平面平面且平面平面,得平面,∴,又矩形为原点,所在的直线分别为轴,建立空间直角坐标系,则

设平面的法向量为
,∴可取,设直线与平面所成角为

(3)如图,假设存在点满足条件,则可设,得,设平面的法向量为,则由
由平面与平面所成的锐二面角为得:
(舍去),∴所求点的靠近的一个三等分点,即在上存在满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.

求证:(1)直线PA∥平面DFE;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,为矩形,平面平面.
求证:

为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

同步练习册答案