【题目】销售甲种商品所得利润是万元,它与投入资金万元的关系有经验公式;销售乙种商品所得利润是万元,它与投入资金万元的关系有经验公式,其中,为常数.现将3万元资金全部投入甲、乙两种商品的销售;若全部投入甲种商品,所得利润为万元;若全部投入乙种商品,所得利润为1万元,若将3万元资金中的万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为万元.
(1)求函数的解析式;
(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.
(1)求椭圆的方程;
(2)过椭圆左顶点做两条互相垂直的直线,,且分别交椭圆于,两点(,不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆,是椭圆与轴的两个交点,为椭圆C的上顶点,设直线的斜率为,直线的斜率为,.
(1)求椭圆的离心率;
(2)设直线与轴交于点,交椭圆于、两点,且满足,当的面积最大时,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,点分别为棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院对治疗支气管肺炎的两种方案A,B进行比较研究,将志愿者分为两组,分别采用方案A和方案B进行治疗,统计结果如下:
有效 | 无效 | 合计 | |
使用方案A组 | 96 | 120 | |
使用方案B组 | 72 | ||
合计 | 32 |
(1)完成上述列联表,并比较两种治疗方案有效的频率;
(2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?
附:.
P() | 0.005 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com