精英家教网 > 高中数学 > 题目详情
17.若F1,F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,P是双曲线上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.

分析 利用双曲线的方程求得|F1F2|和||PF1|-|PF2||,进而利用配方法求得|PF1|2+|PF2|2的值代入余弦定理求得cos∠F1PF2 的值进而求得∠F1PF2.即可求△F1PF2的面积.

解答 解:根据双曲线的方程可知,a=3,b=4,c=5
则|F1F2|=2c=10,||PF1|-|PF2||=2a=2×3=6
∴|PF1|2+|PF2|2-2|PF1||PF2|=36,
∴|PF1|2+|PF2|2=100=|F1F2|2
∴∠F1PF2=90°,
∴△F1PF2的面积为$\frac{1}{2}$|PF1|•|PF2|=32×$\frac{1}{2}$=16.

点评 本题考查了双曲线的定义以及性质的运用,关键是利用性质正确得到|PF1|、|PF2|的位置关系,从而求面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,5a4+4a5=-22,S6=2a4-5
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}-2}}-n$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等比数列{an}同时满足下列条件:a1+a6=33;a3a4=32.
(1)求数列{an}的通项;
(2)若4a2,2a3,a4构成等差数列,求{an}的前6项和S6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断函数f(x)=$\frac{1}{{x}^{2}}$+$\frac{4}{x}$+3的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组向量中可以作为基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ACB=90°,四边形ACED是直角梯形,∠DAC=90°,AD∥CE,AD=AC=2CE=2,BC⊥CE,点F是AB的中点.
(1)求证:CF∥平面BDE;
(2)若$\overrightarrow{BG}$=λ$\overrightarrow{BD}$,AG和平面BDE所成的角的余弦值是$\frac{1}{3}$,试确定点G的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图细图所示,则该几何体的体积为(  )
A.12B.13C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,不等式f(x)≤3的解集为[1,2].
(1)求f(x)的解析式;
(2)求函数f(x)在[m,m+1](m∈R)上的最小值g(m).

查看答案和解析>>

同步练习册答案