精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左焦点为右顶点为离心率为已知点是抛物线的焦点到抛物线准线的距离是.

1)求椭圆的方程和抛物线的方程

2)若是抛物线上的一点且在第一象限满足直线交椭圆于两点的面积取得最大值时求直线的方程.

【答案】(1)椭圆的方程为抛物线的方程为;(2

【解析】试题分析:(1)根据椭圆与抛物线几何条件列方程组,解得,得即得结果.(2)先根据抛物线定义求出B点坐标,确定MN斜率,设直线方程,与椭圆方程联立,利用韦达定理以及弦长公式得底边边长,根据点到直线距离公式得高,代入三角形面积公式得的面积函数关系式,最后根据二次函数最值求法确定直线的方程.

试题解析:(1)由题意可列方程组:

解得所以.

从而椭圆的方程为抛物线的方程为.

(2)可设抛物线的准线方程为

由抛物线的定义得 解得

所以因为点在第一象限所以.

从而.由于所以

的方程可设为 .

联立方程组消去

可得

整理为解得 .

.

所以

到直线的距离.

所以

的面积取得最大值.

此时的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.

(1)求证:EF∥平面PAD

(2)求三棱锥B-EFC的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣aln(x+2),g(x)=xex , 且f(x)存在两个极值点x1、x2 , 其中x1<x2
(1)求实数a的取值范围;
(2)求g(x1﹣x2)的最小值;
(3)证明不等式:f(x1)+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆+=1的焦点分别是 是椭圆上一点,若连结三点恰好能构成直角三角形,则点轴的距离是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱侧面为菱形 .

1)证明:

2)若求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有两个不相同的零点,求实数的值;

(2)记为函数的所有零点之和,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C1 +y2=1,椭圆C2 (a>b>0)的一个焦点坐标为( ,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).
(1)求椭圆C2的方程;
(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且 ,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥A﹣BCD中,AB、AC、AD两两垂直且长度均为10,定长为 的线段MN的一个端点M在棱AB上运动,另一个端点N在△ACD内运动(含边界),线段MN的中点P的轨迹的面积为2π,则m的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河北保定市上学期期末调研已知点到点的距离比到轴的距离大1

I)求点的轨迹的方程;

II)设直线 ,交轨迹两点, 为坐标原点,试在轨迹部分上求一点,使得的面积最大,并求其最大值.

查看答案和解析>>

同步练习册答案