精英家教网 > 高中数学 > 题目详情
P是椭圆
x2
5
+
y2
4
=1
上在第一象限的点,已知以点P及椭圆焦点F1、F2为顶点的三角形的面积等于1,则点P的坐标为(  )
A、(
15
2
,1)
B、(1,
15
2
C、(
5
7
6
1
3
D、(
1
3
5
7
6
分析:根据椭圆的方程的标准形式,求出两个焦点的坐标,利用三角形面积公式求出P点的纵坐标,将其代入椭圆方程求出P点的坐标即可.
解答:解:F1、F2是椭圆
x2
5
+
y2
4
=1
的左、右焦点,
则F1(-1,0),F2(1,0),
设P(x,y)是椭圆上第一象限的点,则
1
2
×2×y=1
,y=1,
将y=1代入椭圆方程得:
x2
5
+
1
4
=1

∴x=
15
2

则点P的坐标为(
15
2
,1).
故选A.
点评:本小题主要考查椭圆的定义、椭圆的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1
和双曲线
x2
3
-y2=1
,P是它们的一个交点,则△F1PF2的形状是(  )
A、锐角三角形
B、B直角三角形
C、钝有三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•襄阳模拟)在△ABC中,AC=2
3
,点B是椭圆
x2
5
+
y2
4
=1
的上顶点,l是双曲线x2-y2=-2位于x轴下方的准线,当AC在直线l上运动时.
(1)求△ABC外接圆的圆心P的轨迹E的方程;
(2)过定点F(0,
3
2
)作互相垂直的直线l1、l2,分别交轨迹E于点M、N和点R、Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1和双曲线
x2
3
-y2=1,P是它们的一个交点,则△F1PF2的面积是(  )

查看答案和解析>>

科目:高中数学 来源:襄阳模拟 题型:解答题

在△ABC中,AC=2
3
,点B是椭圆
x2
5
+
y2
4
=1
的上顶点,l是双曲线x2-y2=-2位于x轴下方的准线,当AC在直线l上运动时.
(1)求△ABC外接圆的圆心P的轨迹E的方程;
(2)过定点F(0,
3
2
)作互相垂直的直线l1、l2,分别交轨迹E于点M、N和点R、Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:长宁区二模 题型:单选题

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1
和双曲线
x2
3
-y2=1
,P是它们的一个交点,则△F1PF2的形状是(  )
A.锐角三角形B.B直角三角形
C.钝有三角形D.等腰三角形

查看答案和解析>>

同步练习册答案