精英家教网 > 高中数学 > 题目详情
已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值        
(2)求f(x)的解析式
(3)若函数g(x)=(x+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是减函数,求实数a的取值范围.
分析:(1)用赋值法来求函数值,因为f(1)=0,且要求f(0)的值,所以赋值时,要使等式中只含f(1),f(0),再解方程即可.
(2)因为f(x+y)-f(y)=x(x+2y+1),要想求f(x),只需等式中y=0即可.
(3)借助导数判断,函数g(x)=(x+1)f(x)-a[f(x+1)-x]在区间(-1,2)上是减函数,也即它的导数在
(-1,2)上小于0恒成立,求导,再判断a在什么范围时,g'(x)≤0在(-1,2)上恒成立即可.
解答:解:(1)令x=1,y=0⇒f(1)-f(0)=2∴f(1)=0⇒f(0)=-2
(2)令y=0⇒f(x)=f(0)+x(x+1)=x2+x-2
(3)∵g(x)=(x+1)f(x)-a[f(x+1)-x]
=(x+1)(x2+x-2)-a[(x+1)2+(x+1)-2-x]
=x3+x2-2x+x2+x-2-ax2-2ax
=x3+(2-a)x2-(1+2a)x-2
∴g'(x)=3x2+2(2-a)x-(1+2a)
g(x)在(-1,2)上是减函数即 g'(x)≤0在(-1,2)上恒成立
即3x2+2(2-a)x-(1+2a)≤0在(-1,2)上恒成立  令
g(-1)≤0,即3+2a-4-1-2a≤0,恒成立;g(2)≤0,即12+8-4a-1-2a≤0,得a≥
19
6

综上知,实数a的取值范围a≥
19
6
点评:本题考查了抽象函数函数值,解析式,以及单调性的判断,因为题目较抽象,做题时要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
).又数列{an}满足,a1=
1
2
,an+1=
2an
1+an2

(I )证明:f(x)在(-1,1)上是奇函数
( II )求f(an)的表达式;
(III)设bn=
1
2log2|f(an+1)
,Tn为数列{bn}的前n项和,若T2n+1-Tn
m
15
(其中m∈N*)对N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•滨州一模)已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)设△ABC的三个内角A,B,C的对边分别为a,b,c,其中c=2
3
,f(C)=0,若向量
m
=(sinB,2)与向量
n
=(1,-sinA)垂直,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)已知函数f(x)对任意的x,y∈R,均有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1,设M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,则实数a的取值范围是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)已知函数f(x)对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的大致图象为(  )

查看答案和解析>>

同步练习册答案