精英家教网 > 高中数学 > 题目详情
(2009•海珠区二模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为(-
13
,1)
,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
分析:(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值.
(II)求出g(x)的导数在x=-1的值即曲线的切线斜率,利用点斜式求出切线的方程.
(III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围.
解答:解:(I)g′(x)=3x2+2ax-1由题意3x2+2ax-1<0的解集是(-
1
3
,1)

即3x2+2ax-1=0的两根分别是-
1
3
,1

将x=1或-
1
3
代入方程3x2+2ax-1=0得a=-1.
∴g(x)=x3-x2-x+2.(4分)
(II)由(Ⅰ)知:g′(x)=3x2-2x-1,∴g′(-1)=4,
∴点p(-1,1)处的切线斜率k=g′(-1)=4,
∴函数y=g(x)的图象在点p(-1,1)处的切线方程为:
y-1=4(x+1),即4x-y+5=0.(8分)
(III)∵2f(x)≤g′(x)+2
即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立
可得a≥lnx-
3
2
x-
1
2x
对x∈(0,+∞)上恒成立
h(x)=lnx-
3
2
x-
1
2x
,则h′(x)=
1
x
-
3
2
+
1
2x2
=-
(-1)(3x+1)
2x2

令h′(x)=0,得x=1,x=-
1
3
(舍)
当0<x<1时,h′(x)>0;当x>1时,h′(x)<0
∴当x=1时,h(x)取得最大值-2
∴a≥-2.
∴a的取值范围是[-2,+∞).(13分)
点评:解决不等式恒成立问题,常用的方法是分离出参数,构造新函数,求出新函数的最值,得到参数的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•海珠区二模)将一枚骰子先后抛掷2次,观察向上面的点数
(Ⅰ)点数之和是5的概率;
(Ⅱ)设a,b分别是将一枚骰子先后抛掷2次向上面的点数,求式子2a-b=1成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海珠区二模)已知全集I={0,1,2,3},集合M={0,1,2},N={0,2,3},则M∩(?IN)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海珠区二模)设命题p:曲线y=e-x在点(-1,e)处的切线方程是:y=-ex;命题q:a,b是任意实数,若a>b,则
1
a+1
1
b+1
.则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海珠区二模)函数y=f(x)的图象如图所示.观察图象可知函数y=f(x)的定义域、值域分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海珠区二模)函数y=cos2ωx-sin2ωx(ω>0)的最小正周期是π,则函数f(x)=2sin(ωx+
π
4
)的一个单调递增区间是(  )

查看答案和解析>>

同步练习册答案