(本小题满分12分)
已知向量,,,且、、分别为 的三边、、所对的角。
(1)求角C的大小;
(2)若,,成等差数列,且,求边的长。
(1)(2)
【解析】此题考查了平面向量的数量积运算法则,两角和与差的正弦函数公式,诱导公式,等差数列的性质,余弦定理,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键
(1)由两向量的坐标,利用平面向量的数量积运算法则列出关系式,利用两角和与差的正弦函数公式化简,得到其数量积为sin(A+B),又根据三角形的内角和定理及诱导公式化简,得到结果为sinC,而已知数量积为-sin2C,两者相等,并利用二倍角的正弦函数公式化简,根据sinC不为0,两边同时除以sinC,求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;
(2)由三角形的三边a,c及b成等差数列,利用等差数列的性质得到2c=a+b,再利用平面向量的数量积运算法则及诱导公式化简将cosC的值代入求出ab的值,接着利用余弦定理得到c2=a2+b2-2abcosC,根据完全平方公式变形后,将cosC,a+b,及ab代入得到关于c的方程,求出方程的解即可得到c的值.
解:(1) …………2分
对于,
…………3分
又,
…………6分
(2)由,
由正弦定理得 …………8分
,
即 …………10分
由余弦弦定理, …………11分
, …………12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com