精英家教网 > 高中数学 > 题目详情
圆(x+1)2+y2=4上的动点p到直线x+y-7=0的距离的最小值等于(  )
分析:求出圆心到直线x+y-7=0的距离d,由d-r即可求出P到直线距离的最小值.
解答:解:由圆方程得:圆心(-1,0),半径r=2,
∵圆心到直线x+y-7=0的距离d=
|-1+0-7|
2
=4
2

∴动点P到直线x+y-7=0的距离的最小值等于d-r=4
2
-2.
故选A.
点评:此题考查了直线与圆的位置关系,点到直线的距离公式,圆的标准方程,根据题意得出动点P到直线x+y-7=0的距离的最小值为d-r是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点C为圆(x+1)2+y2=8的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且
MQ
AP
=0,
AP
=2
AM

(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)设过点(0,2)且斜率为2的直线l与(1)中所求的曲线交于B,D两点,O为坐标原点,求△BDO的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(3,1)作一直线与圆(x-1)2+y2=9相交于M、N两点,则|MN|的最小值为(  )
A、2
5
B、2
C、4
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点p是圆(x+1)2+y2=16上的动点,圆心为B.A(1,0)是圆内的定点;PA的中垂线交BP于点Q.
(1)求点Q的轨迹C的方程;
(2)若直线l交轨迹C于M,N(MN与x轴、y轴都不平行)两点,G为MN的中点,求KMN•KOG的值(O为坐标系原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是圆(x-1)2+y2=4上任意一点,过P作PQ⊥x轴,Q为垂足,求线段PQ的中点M的轨迹方程,并画出图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为
x2+(y+1)2=1
x2+(y+1)2=1

查看答案和解析>>

同步练习册答案