精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+2f(x),则不等式4f(x+2014)-(x+2014)2f(-2)>0的解集为(  )
A、(-∞,-2012)
B、(-2012,0)
C、(-∞,-2016)
D、(-2016,0)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.
解答:解:由xf′(x)>x2+2f(x),(x<0),
得:x2f′(x)-2xf(x)<x3
∵x<0,
∴x3<0,
即x2f′(x)-2xf(x)<0,
设F(x)=
f(x)
x2

则即[
f(x)
x2
]′=
x2f(x)-2xf(x)
x4
<0,
则当x<0时,得F'(x)<0,即F(x)在(-∞,0)上是减函数,
∴F(x+2014)=
f(x+2014)
(x+2014)2
,F(-2)=
f(-2)
(-2)2
=
f(-2)
4

即不等式4f(x+2014)-(x+2014)2f(-2)>0等价为F(x+2014)-F(-2)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2014)>F(-2)得,x+2014<-2,
即x<-2016,
故选C.
点评:本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在菱形ABCD中,对角线AC=4,E为CD的中点,
AE
AC
=(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的五个顶点都在一个球面上,且底面ABCD是边长为1的正方形,PA⊥ABCD,PA=
2
,则该球的表面积为(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折.给出四个结论:
①DF⊥BC;
②BD⊥FC;
③平面DBF⊥平面BFC;
④平面DCF⊥平面BFC.
在翻折过程中,可能成立的结论是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图△ABC中,AB=4,BC=3,AC=2,以A为圆心,直径PQ=2,则
BP
CQ
的最大值为(  )
A、
15
2
B、
19
2
C、
21
2
D、
23
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校1000名学生今年三月“江南十校联考”数学分数的频率分布直方图如图所示,根据该图这1000名学生的数学平均分及众数的估计值分别为(  )
A、101,90
B、103,100
C、104,100
D、105,110

查看答案和解析>>

科目:高中数学 来源: 题型:

求证下列等式成立:
n
R=1
R3=[
n(n+1)
2
]2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Atan(ωx+ϕ)(ω>0,|ϕ|<
π
2
),y=f(x)的部分图象如图所示,则f(
π
12
)
=(  )
A、3
B、
3
C、1
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正六边形的半径为6cm,求它的外接圆和内切圆所围成的圆环面积.

查看答案和解析>>

同步练习册答案