精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过的直线与抛物线相交于两点.

1)若点是点关于坐标原点的对称点,求面积的最小值;

2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

【答案】12)存在,直线的方程为;定值为

【解析】

1)设,直线的方程为,联立直线的方程与抛物线的方程消元,然后韦达定理可得,然后,用表示出来即可.

2)假设满足条件的直线存在,其方程为,则以为直径的圆的方程为,将直线方程代入,得,然后将表示出来即可.

1)依题意,点的坐标为,可设

直线的方程为,与联立得.

由韦达定理得:

于是

所以当时,面积最小值,最小值为.

2)假设满足条件的直线存在,其方程为

则以为直径的圆的方程为

将直线方程代入,得

.

设直线与以为直径的圆的交点为

,于是有

.

,即时,为定值.

故满足条件的直线存在,其方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于两点,当直线轴垂直时,.

1)求椭圆的标准方程;

2)当直线轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线的距离均相等?若存在,求点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于MN两点,且

(1)求抛物线C的方程;

(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于AB,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把有相同数字相邻的数叫“兄弟数”,现从由一个1,一个2,两个3,两个4这六个数字组成的所有不同的六位数中随机抽取一个,则抽到“兄弟数”的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过右焦点和短轴一个端点的直线的斜率为为坐标原点.

1)求椭圆的方程;

2)设点,直线与椭圆C交于两个不同点PQ,直线APx轴交于点M,直线AQx轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.

1)求抛物线的方程;

2)若,直线交于点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,左上面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实以及黄实,并且利用(股勾)朱实黄实弦实,化简得勾,设勾股中勾股比为,若向弦图内随机抛掷颗图钉,则落在黄色图形内的图钉数大约为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.

(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)

(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:

学生序号

1

2

3

4

5

6

7

数学成绩

60

65

70

75

85

87

90

物理成绩

70

77

80

85

90

86

93

①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;

②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?

附:线性回归方程

其中.

76

83

812

526

查看答案和解析>>

同步练习册答案