精英家教网 > 高中数学 > 题目详情

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

【答案】C
【解析】解:如图所示,
延长AB到点N,延长AC到点M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,则四边形ABEC,ANGM,EHGF均为平行四边形.由题意可知:点P(x,y)组成的区域D为图中的四边形EFGH及其内部.
=(3,1), =(1,3), =(﹣2,2),∴ = = =2
∴cos∠CAB= = =
∴四边形EFGH的面积S= =8,
∴(a﹣1)(b﹣1)=1,即
∴4a+b=(4a+b) =5+ =9,当且仅当b=2a=3时取等号.
∴4a+b的最小值为9.
故选:C.

【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:,以及对平面向量的基本定理及其意义的理解,了解如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左、右顶点分别为A,B,焦距为2 ,直线x=﹣a与y=b交于点D,且|BD|=3 ,过点B作直线l交直线x=﹣a于点M,交椭圆于另一点P.

(1)求椭圆的方程;
(2)证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2, ),则f(4)的值等于
④已知向量 =(3,﹣4), =(2,1),则向量 在向量 方向上的投影是
说法错误的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一次考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是( )

A. 6 B. 36 C. 60 D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是: .

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.

分数段

X:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1,F2为椭圆的两个焦点,P为椭圆上的一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.

查看答案和解析>>

同步练习册答案