精英家教网 > 高中数学 > 题目详情
20.如图所示,正方体ABCD-A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N:NB=1:2,MC与BD交于P,求证:面NPC⊥平面ABCD.

分析 利用比例关系,证明NP∥D'D,利用DD'⊥平面ABCD,可得NP⊥平面ABCD,即可证明结论.

解答 证明:∵MD∥CB,∴△PMD∽△PCB,
∴DP:PB=DM:BC=1:2=D'N:NB,
∴NP∥D'D,
而DD'⊥平面ABCD,
∴NP⊥平面ABCD,
∵NP?面NPC,
∴面NPC⊥平面ABCD.

点评 本题考查比例的性质,考查线面垂直,平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,质点在坐标平面内做直线运动,分别求下列位移向量的坐标.
(1)向量$\overrightarrow{a}$表示沿东北方向移动了2个单位长度;
(2)向量$\overrightarrow{b}$表示沿西偏北60°方向移动了4个单位长度;
(3)向量$\overrightarrow{c}$表示沿东偏南30°方向移动了6个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(b>a>0)的正半轴焦点为F,负半轴焦点为F′,AA′为长轴,点Q为椭圆上任意一点,则分别以|QF|,|QF′|,|AA′|为直径的圆之间的位置关系说法正确的是(  )
A.以|QF|为直径的圆与以|AA′|为直径的圆内切
B.以|QF′|为直径的圆与以|AA′|为直径的圆相交
C.以|QF|为直径的圆与以|AA′|为直径的圆相交
D.以|QF|为直径的圆与以|QF′|为直径的圆相切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{{x}^{2}}{9}$-y2=1的两焦点是F1,F2,A为双曲线的一点,且|AF1|=7,则|AF2|的值是(  )
A.5+$\sqrt{10}$B.5$±\sqrt{10}$C.13D.13或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3x-5的定义域用区间可表示为(-∞,+∞),函数y=$\frac{3-x}{2x+4}$的定义域用区间可表示为(-∞,-2)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合M={α|k•360°<α<120°+k•360°,k∈Z},N={α|90°+k•360°<α<150°+k•360°,k∈Z},则M∩N中α角所在的象限为第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=lgsin$\frac{x}{2}$的定义域是(4kπ,2π+4kπ),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos(-40°)cos20°-sin(-40°)•sin(-20°)等于.
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若双曲线的顶点为椭圆x2+$\frac{y^2}{2}$=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是$\frac{y^2}{2}-\frac{x^2}{2}=1$.

查看答案和解析>>

同步练习册答案