精英家教网 > 高中数学 > 题目详情
精英家教网如图,在△ABC中,AC=2,BC=1,cosC=
34

(1)求AB的值;
(2)求sin(2A+C)的值.
分析:(1)利用余弦定理把AC=2,BC=1,cosC=
3
4
.即可求得AB.
(2)由cosC求得sinC,在由正弦定理求得sinA,进而根据同角三角函数的基本关系求得cosA,用倍角公式求得sin2A和cos2A,进而利用两角和公式求得答案.
解答:解:(1)由余弦定理,AB2=AC2+BC2-2AC•BC•cosC=4+1-2×2×1×
3
4
=2

那么,AB=
2

(2)解:由cosC=
3
4
,且0<C<π,
sinC=
1-cos2C
=
7
4
.由正弦定理,
AB
sinC
=
BC
sinA

解得sinA=
BCsinC
AB
=
14
8

所以,cosA=
5
2
8

由倍角公式sin2A=2sinA•cosA=
5
7
16

cos2A=1-2sin2A=
9
16

sin(2A+C)=sin2AcosC+cos2AsinC=
3
7
8
点评:本题主要考查了正弦定理和余弦定理的应用.应熟练掌握这两个的定理的公式和变形公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案