精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的函数f(x)满足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]时,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则f(2014),f(2015),f(2016)大小关系为(  )
A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2014)>f(2015)
C.f(2016)=f(2014)>f(2015)D.f(2014)>f(2015)=f(2016)

分析 根据已知可得函数 f (x)的图象关于直线x=1对称,周期为4,且在[1,3]上为减函数,进而可比较f(2014),f(2015),f(2016)的大小

解答 解:∵函数 f (x)满足:
①f(2-x)=f(x),故函数的图象关于直线x=1对称;
②f(x+2)=f(x-2),故函数的周期为4;
③x1,x2∈[1,3]时,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,故函数在[1,3]上为减函数;
故f(2014)=f(2),
f(2015)=f(3),
f(2016)=f(0)=f(2),
故f (2016)=f (2014)>f (2015),
故选:C.

点评 本题考查的知识点是函数的对称性,函数的周期性,函数的单调性,从已知的条件中分析出函数的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x${\;}^{-2{m}^{2}+m+3}$ (m∈Z)是偶函数,且f(x)在(0,+∞)上单调递增.
(1)求m的值,并确定f(x)的解析式;
(2)g(x)=log2[3-2x-f(x)],求g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax2-lnx(a∈R).
(1)如果函数f(x)的图象不在x轴的下方,求实数a的取值范围.
(2)若方程f(x)-k=0在区间[$\frac{1}{e}$,e]内有两个不相等的实根.求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知四棱锥ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱AA1⊥底面ABCD,若得二面角A1-BD-C1的大小为60°,求四棱柱ABCD-A1B1C1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.三角形三边长分别是6、8、10,那么它最短边上的高为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是(  )
A.-3?B.1C.$-\frac{21}{4}$?D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,若AD=PA=a,AB=$\sqrt{2}$a.
(1)在PC上是否存在一点Q,使得AQ∥平面MND?若存在,求出该点的位置,若不存在,请说明理由;
(2)求二面角N-MD-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+3≥0}\\{x≤3}\end{array}\right.$,则z=2x+y的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{ax+2015b}{{x}^{2}+1}$是定义在(-∞,+∞)上的奇函数,且f($\frac{1}{3}$)=$\frac{3}{10}$.
(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(本小问不需说明理由)

查看答案和解析>>

同步练习册答案